paprika.idref.fr paprika.idref.fr data.idref.fr data.idref.fr Documentation Documentation
Identifiant pérenne de la notice : 221726837Copier cet identifiant (PPN)
Notice de type Notice de regroupement

Point d'accès autorisé

Optimisation de réseaux de capteurs pour la caractérisation de source de rejets atmosphériques

Variante de point d'accès

Sensors networks optimization for the characterization of atmospheric releases source
[Notice de regroupement]

Information

Langue d'expression : français
Date de parution :  2017

Notes

Note publique d'information : 
L’objectif principal de cette étude est de définir les méthodes nécessaires pour optimiser un réseau de surveillance conçu pour la caractérisation de source de rejets atmosphériques. L’optimisation consiste ici à déterminer le nombre et les positions optimales de capteurs à déployer afin de répondre à ce type de besoin. Dans ce contexte, l’optimisation est réalisée pour la première fois par un couplage entre la technique d’inversion de données dite de « renormalisation » et des algorithmes d’optimisation métaheuristique. La méthode d’inversion a été en premier lieu évaluée pour la caractérisation de source ponctuelle, et a permis ensuite, de définir des critères d’optimalité pour la conception des réseaux. Dans cette étude, le processus d’optimisation a été évalué dans le cadre d’expériences réalisées en terrain plat sans obstacles (DYCE) et en milieu urbain idéalisé (MUST). Trois problématiques ont été définies et testées sur ces expériences. Elles concernent (i) la détermination de la taille optimale d’un réseau permettant de caractériser une source de pollution, où une fonction coût (erreurs normalisées), traduisant l’écart entre les observations et les données modélisées, a été minimisée ; (ii) la conception optimale d’un réseau permettant de caractériser une source ponctuelle inconnue, pour une condition météorologique particulière. Dans ce contexte, une fonction coût entropique a été maximisée afin d’augmenter la quantité d’information fournie par le réseau ; (iii) la détermination d’un réseau optimal permettant de caractériser une source ponctuelle inconnue pour des configurations météorologiques multiples. Pour ce faire, une fonction coût entropique généralisée, que nous avons définie, a été maximisée. Pour ces trois problématiques, l’optimisation est assurée dans le cadre d’une approche d’optimisation combinatoire. La détermination de la taille optimale d’un réseau (problématique 1) s’est révélée particulièrement sensible aux différentes conditions expérimentales (hauteur et débit de la source, conditions de stabilité, vitesse et direction du vent, etc.). Nous avons noté pour ces expériences, que les performances des réseaux sont meilleures dans le cadre d’une dispersion sur terrain plat comparativement aux milieux urbains. Nous avons également montré que différentes architectures de réseaux pouvaient converger vers le même optimum (approché ou global). Pour la caractérisation de sources inconnues (problématiques 2 et 3), les fonctions coûts entropiques se sont avérées robustes et ont permis d’obtenir des réseaux optimaux performants (de tailles raisonnables) capables de caractériser différentes sources pour une ou plusieurs conditions météorologiques.

Note publique d'information : 
The main objective of this study is to define the methods required to optimize a monitoring network designed for atmospheric source characterization. The optimization consists in determining the optimal number and locations of sensors to be deployed in order to respond to such needs. In this context, the optimization is performed for the first time by a coupling between the data inversion technique named "renormalization" and the metaheuristic optimization algorithms. At first, the inversion method was evaluated for a point source, and then have allowed to define optimality criteria for networks design. In this study, the optimization process was evaluated in experiments carried out in flat terrain without obstacles (DYCE) and in an idealized urban environment (MUST). Three problems were defined and tested based on these experiments. These problems concern (i) the determination of the optimal network size for source characterization, for which a cost function (standard errors) estimating the gap between observations and modeled data, has been minimized; (ii) the optimal design of a network to retrieve an unknown point source for a particular meteorological condition. In this context, an entropy cost function has been maximized in order to increase the information’s amount provided by the network; (iii) the determination of an optimal network to reconstruct an unknown point source for multiple meteorological configurations. For this purpose, a generalized entropic cost function that we have defined, has been maximized. For these all problems, optimization is ensured within the framework of a combinatorial optimization approach. The determination of the optimal network size (problem 1) was highly sensitive to experimental conditions (source height and intensity, stability conditions, wind speed and direction, etc.). We have noted that the networks performance is better for a dispersion on flat terrain compared to the urban environments. We have also shown that different networks architectures can converge towards the same optimum (approximate or global). For unknown sources reconstruction (problems 2 and 3), the entropic cost functions have proven to be robust and allowed to obtain optimal networks (for reasonable sizes) capable of characterizing different sources for one or multiple meteorological conditions.


Notices d'autorité liées

... Références liées : ...