paprika.idref.fr paprika.idref.fr data.idref.fr data.idref.fr Documentation Documentation
Identifiant pérenne de la notice : 226608522Copier cet identifiant (PPN)
Notice de type Notice de regroupement

Point d'accès autorisé

Autour de la dynamique semi-classique de certains systèmes complètement intégrables

Variante de point d'accès

.
[Notice de regroupement]

Information

Langue d'expression : français
Date de parution :  2009

Notes

Note publique d'information : 
La dynamique semi-classique d'un opérateur pseudo-différentiel sur une variété est l'analogue quantique du flot classique de son symbole principal sur la variété . Cette dynamique semi-classique est décrite par l'équation de Schrödinger de l'opérateur ; alors que le flot classique hamiltonien est, lui, donné par les équations d'Hamilton associées a la fonction . Le spectre de l'opérateur pseudo-différentiel permet donc de pouvoir décrire les solutions générales en fonction du temps de l'équation de Schrödinger associée. Le comportement en temps long de la dynamique semi-classique donnée par ces solutions reste cependant sur bien des points mystérieux. La dynamique semi-classique dépend donc directement du spectre de l'opérateur et aussi par conséquent de la géométrie sous jacente dans induite par la fonction symbole classique . Dans cette thèse, on décrit d'abord la dynamique semi-classique en temps long dans le cas de la dimension 1 avec une fonction symbole n'ayant pas de singularité ou bien avec une singularité non-dégénérée de type elliptique : le feuilletage dans de est alors elliptique. Les règles de Bohr-Sommerfeld régulières fournissent alors le spectre d'un tel opérateur. On traite aussi le cas de la dimension 2 qui nous amène à quelques discussions de théorie de nombres. Pour finir, on s'intéresse au cas d'un opérateur pseudo-différentiel avec une singularité non-dégénérée de type hyperbolique : le feuilletage dans de est alors un ”huit hyperbolique ” (modèle difféomorphe au Schrödinger avec un potentiel double puits).

Note publique d'information : 
The semi-classical dynamics of a pseudo-differential operator on a manifold is the quantum analogous of the classical flow of his main symbol on the manifold . This semi-classical dynamics is described by the Schrödinger equation of the operator whereas the classical Hamiltonian flow is given by the Hamilton's equations associated with the function . Thus the spectrum of the pseudo-differential operator enable to describe the general solutions of the associated Schrödinger equation. The long time behavior of these solutions remains in many ways mysterious. The semi-classical dynamics depends directly on the spectrum of the operator and consequently also on the underlying geometry into induced by the classical symbol . In this thesis, we first describe the long time semi-classical dynamics of an Hamiltonian in the one-dimensional case with a symbol function with no singularity or with non-degenerate elliptic singularity type : the associated fibers are closed elliptic orbits. The regular Bohr-Sommerfeld rules supply the spectrum of the operator. We are also interested in the elliptic case of the dimension 2 which leads to some discussion of numbers theory. Finally we consider the case of a one-dimensionnal pseudo-differential operator with a non-degenerate hyperbolic singularity : the singular fiber of in is a “ hyperbolic eight ” (this model is diffeomorphic to the Schrödinger operator with a double wells).


Notices d'autorité liées

... Références liées : ...